
ELECTRON-CLOUD MODULE FOR THE ORBIT CODE✝

A. Shishlo#, Y. Sato, J. Holmes, S. Danilov, S. Henderson,
SNS* project, ORNL, Oak Ridge, TN 37831, USA

Abstract
A new electron cloud module has been developed and

inserted into the beam dynamics code, ORBIT, which is
used for simulations in high intensity proton rings. In
addition to incorporating the dynamics of electron cloud
build up, the model simulates the self consistent dynamics
of the proton beam and the electrons. This new model
includes full 3D descriptions of the proton bunch and the
electron cloud, including both their space charge
interactions and their motion in external electric and
magnetic fields. The secondary emission of electrons is
calculated using a set of models based on those of M.
Furman and M. Pivi. The structure, algorithms, parallel
implementation, and benchmarks of the new ORBIT
module with analytic results are presented.  

MOTIVATION
The instability caused by an electron cloud effect (ECE)

may set an upper limit to the intensity of proton storage
rings. For instance, the instability observed in the Proton
Storage Ring (PSR) at the Los Alamos National
Laboratory is probably due to the interaction between
electron clouds (EC) and the proton beam [1]. Similar
instabilities have been observed in other machines, so that
in spite of several prevention measures [2] ECE continues
to be a concern in the Spallation Neutron Source
accumulation ring. The self consistent description of the
ECE including proton beam instabilities is a part of
electron cloud dedicated studies at the SNS project.

SOLUTION
Any code simulating the collective coupling of the

electron cloud and the proton beam must include three
integrated parts: an accelerator code for proton beam
dynamics calculations, a model for the electron cloud
build up and dynamics, and an interface that contains the
interactions between EC and protons.

Accelerator Code
There are two reasons that the ORBIT code [3] has

been chosen as the accelerator component of a new EC
module. First, from the beginning ORBIT was dedicated
to the realistic simulation of actual machines, especially
SNS. It includes many features to describe single particle
and collective dynamics. Among these are: single particle
transport through various types of lattice elements using
                                                            
✝ Research sponsored by UT-Batelle, LLC, under contract no. DE-AC05-
00OR22725 and DE-FG02-92ER40747 for the U.S. Department of
Energy, and NSF under contract no. PHY-0244793.
# shishlo@ornl.gov
* SNS is a partnership of six national laboratories: Brookhaven,
Argonne, Jefferson, Lawrence Berkeley, Los Alamos and Oak Ridge.

either MAD matrices or simplectic TEAPOT-like
elements; magnet errors; closed orbit calculations; orbit
correction; longitudinal and transverse impedances;  1D,
2D, and 3D space charge models; losses and collimation;
etc. These capabilities are important for distinguishing the
effects of different possible sources of instabilities,
including the electron cloud effect. Second, ORBIT
supports parallel simulations using MPI. There is no
doubt that the new EC module must support parallel
calculations to achieve reasonable calculation times.

Electron Cloud Model
There are several simulation codes that describe the

development and dynamics of electron clouds, but the
effort and time required to integrate them with an existing
accelerator code can be more than that needed to design
and implement a new EC code based on well known
algorithms and physical models. We therefore decided to
develop a new code with following features:
♦ It is a collection of C++ classes.
♦ All components have a well defined interface.
♦ It can be easily extended by inheritance from base

classes.
♦ It provides parallel calculations based on MPI.
♦ It can be used independently without a wrapping

accelerator code.

Linkage between EC model and ORBIT
There are only a few classes needed to glue together the

new ECE code and the original ORBIT code. They deal
with the EC module and ORBIT classes as data members
and orchestrate all computational flow.

Figure 1: Simulated physical system.

PHYSICAL APPROACH
The simulated physical system consists of the proton

bunch in the ring, electrons inside a special region that is
called an electron cloud region, and a perfectly
conducting pipe whose surface can be a source of primary
or secondary electrons (see Fig. 1). The protons propagate



around the ring using ORBIT, with location s  as
independent variable, until they encounter an electron
cloud region. At this time, they are frozen and passed
through the electron cloud region where they contribute to
the electron dynamics, which is calculated using time as
the independent variable. The changes in proton
momentum due to the electron cloud are accumulated as
kicks in an auxiliary grid covering the proton beam and
applied to protons at the end of propagation through the
electron cloud region.

For both electrons and protons the PIC method is used
to calculate fields, so subsidiary grids are needed for
space charge densities and potentials. The proton bunch is
very long (about 160 m in SNS) compared to its
transverse size (a diameter of about 10 cm in SNS).
Hence, the 3D grids are treated as a set of transverse 2D
grids uniformly distributed along the longitudinal
coordinate. For each 2D slice, an independent space
charge problem is solved and this provides an opportunity
for effective and simple parallelization of the code. This
approach is applicable for long and thin bunches. These
simplifications are completely reasonable for both SNS
and PSR.

One can define multiple electron cloud regions in the
ring lattice either to cover the most dangerous places with
respect to ECE or, if desired, the whole ring. The length
of each EC region should be short enough to provide
small changes in twiss parameters inside. Each region has
its own bunch of electrons with its own unique history
and dynamics, and a set of external magnetic fields if we
consider EC inside magnets. Interaction between the
different electron clouds regions exists only through the

proton beam dynamics.

Figure 2: ORBIT’s electron cloud module structure.

ELECTRON CLOUD MODULE
STRUCTURE

The ORBIT code consists of a combination of C++
classes and SuperCode Interface modules. To use ORBIT,
the user creates a SuperCode script that does not require
compilation, and this script is interpreted by the ORBIT
executable. One ongoing activity is the replacement of the
SuperCode by a more powerful Python interface. The
general structure of the EC module and its fit into the
ORBIT code are shown in Fig. 2. The new module is
mostly independent of the original ORBIT code and can
be used either inside other accelerator codes or
independently. The ECloud class is merely a SuperCode

wrapper of the EP_Node and EP_NodeCalculator class
methods. These classes interact with structures and
classes of original ORBIT and organize the whole EC
simulation process.

BASE CLASSES OF EC MODULE
There are only a few classes responsible for the

functionality of the EC module. They are listed in Table 1.
Others classes are for convenience and/or diagnostics
classes and do not affect the new model simulation
approach.

Table 1: Base classes of the EC module.

Class Description

eBunch Manipulates the 6D – coordinates of
the macro-electrons.

EP_Boundary 2D SC solver that also contains the
transverse 2D grid parameters.

Grid3D 3D grid with references to the
EP_Boundary class.

Surfaces
Classes

Collection of classes describing
different surfaces of the beam pipe.

Field Source
Classes

Collection of classes specifying
electrostatic and magnetic fields.

Tracker Tracks macro-electrons by using an
arbitrary set of field sources.

eBunch Class
The eBunch class is a resizable container that keeps

information about macro-electrons: 6D coordinates; a
macro-size; a dead/alive flag. The macro-size of each
macro-electron is a unique value that is defined at the
moment of adding a new macro-electron to the bunch.
This class provides the following methods to operate with
macro-electrons: access to each of the 6D coordinates;
add macro-electron; delete macro-electron; print all
information into a file; create all macro-electrons by
reading information from an external file. Its parallel
capabilities are used when it reads and writes the content
of the electron bunch into or from the external file.

EP_Boundary Class
The EP_Boundary class has mixed functionality:
♦ It keeps information about 2D transverse grid and

beam-pipe shape and size in the XY-plane. The
pipe shape can be a circle, ellipse, or rectangle.

♦ It contains a 2D Poisson solver that uses the
convolution method. It contains a method that
accepts a 3D grid with space charge density and
returns another 3D grid with potential values at the
grid points. Each XY-slice of the potential 3D grid
is a solution of the 2D space charge problem for
the XY-slice of the space-charge density grid.



♦ It can add boundary conditions (zero potential on
the beam-pipe) to the potential 3D grid by using
the Capacity Matrix Method.

♦ It uses an external FFTW library and keeps
necessary arrays inside.

♦ For an electron hitting the surface of the beam-
pipe, it finds an impact point on the surface and
calculates the electron’s normal vector by using
internal geometry information

♦ It does not have any parallel capabilities

Grid3D Class
The Grid3D class is the parent class for a Grid3D class

hierarchy that, in addition to the parent class, includes two
subclasses that specifically describe a space charge
density and potential grid.

The parent class has the following functions:
♦ It contains 3D arrays of charge density and

potential values.
♦ It provides direct access to the 3D arrays and to the

2D slices.
♦ It calculates a charge density and gradient at an

arbitrary point inside the 3D grid and bins macro-
particles by using 3x3x3 points interpolation
scheme.

The Grid3D class has methods that distribute the 3D
grid over processors. For parallel calculations each CPU
keeps its Grid3D object but all of them together can be
considered as one big distributed 3D grid. In this case
each separate Grid3D object has two additional 2D slices
that have the same values as these slices on neighboring
CPUs to provide identical results for 3x3x3 points
interpolation schema for parallel and nonparallel
calculations.

Surface Classes
The structure of the surface classes is shown in Fig. 3.

Each surface class is a subclass of an abstract baseSurface
class and each must implement at least one method:
“impact”. This method removes the macro-electron with a
particular index from the eBunch and adds the emitted
new macro-electrons to the eBunch at the specific point
on the beam-pipe surface and with a momentum defined
relative to the normal vector to the surface.

Figure 3: The hierarchy of surface classes

At this moment the EC module has three surface
classes:
♦ An absorption surface that absorbs all electrons.
♦ A perfect reflection surface.
♦ A Controlled Secondary Emission surface that is

an implementation of Pivi-Furman’s algorithm [4].

The original Pivi-Furman algorithm has been modified
to enable a variable macro-size for macro-electrons. This
modification enables the user to control the number of
macro-electrons during costly electron cloud buildup
simulations.

Field Source Classes
The field source classes specify magnetic and electric

fields that act on electrons moving inside electron cloud
region. All these classes implement an interface that is
defined by the parent class of this hierarchy. Only two
methods should be implemented: “get electric field” and
“get magnetic field”. They use coordinates as input
parameters and return the three components of the fields
at the input coordinates. At this moment, the EC module
includes three child classes of the base field source: the
electric field of the electron cloud, electric and magnetic
fields from the proton bunch, and a source of uniform
electric and magnetic fields.   Further options are under
development.

The field source class structure allows the creation of
new classes for more complicated magnetic and electric
fields.

Tracker Classes
The tracker classes move macro-electrons in the EC

region. There is a parent class (baseParticleTracker) that
specifies the interface and functionality of all trackers. All
subclasses should implement only one method. Inside this
method macro-electrons are moved by using the
combined forces of all registered electro-magnetic field
sources. Users can register as many field sources as they
wish.

At present there are two methods implemented to
calculate the non-relativistic electron’s motion:
♦ Symplectic integration using a leapfrog method
♦ Analytic integration using a constant local field

approximation.

Figure 4: Circular electron motion.

BENCHMARKS WITH ANALITICAL
MODELS

A set of benchmarks has been performed to verify the
fidelity of different parts of the EC module. The most
sophisticated combine benchmarks of the space charge
solver and the tracker. Figure 4 shows the two-
dimensional motion of an electron in the electric field of a
thin charged wire that is perpendicular to the plane of



motion. The correct circular motion is reproduced. In
other benchmarks the ability of the tracker to calculate a
trajectory in the presence of magnetic fields has also been
checked.

SIMULATION ALGORITHMS
It was pointed out above that only two classes connect

the electron cloud module to the rest of the ORBIT code
and orchestrate all simulations (see Fig. 2).

The EP_Node class is a subclass of the Node class of
ORBIT:
♦ It represents an accelerator lattice element through

which the proton bunch is propagated.
♦ It uses an EP_NodeCalculator to propagate the

proton bunch through the electron cloud region.
♦ There can be an arbitrary number of these nodes in

the lattice.
EP_NodeCalcularor is the class that actually combines

all classes together and implements the algorithm of EC
calculations. The algorithm can be divided onto three
stages:

The first stage includes preparations for calculation:
checking the sizes of the arrays and resizing if necessary;
analyzing the proton bunch analysis; and calculating the
fields.

In the second stage, the simulation of the electron cloud
buildup is performed and its effect on the proton bunch is
accumulated.

In the third stage, the accumulated kicks are applied to
the protons of accelerator beam.

Stage 1. Preparations
This stage deals with the proton bunch only. The

macro-particles of this bunch are distributed among
CPUs. This task is carried out by the ParticleDistributor
ORBIT class. By using the information from this class the
necessary 3D arrays are resized on each CPU. It is
necessary to have 5 distributed 3D grid objects: two for
space charge proton density and potential and three for x,
y, and z directions of accumulated kicks. The macro-
protons from the bunch are binned into the space charge
density grid and the space charge potential is calculated.
The application of boundary conditions on the perfect
conducting beam pipe surface is optional.

Stage 2. EC Buildup Simulation
During this stage, as time progresses, the proton grid is

moved through the electron cloud region at the beam
velocity and the processes of primary electron generation,
macro-electron motion, and multipaction are simulated.
This is done by three nested loops and is a typical
technique for EC buildup algorithms.

The outside nested loop prepares the EC potential as a
field source for EC dynamics simulation. The number of
steps (usually a few thousand) is determined by the
requirement of adiabatic change in the electron cloud
potential. In the beginning of this iteration, primary

electrons are generated by routines simulating protons
grazing the vacuum chamber or ionizing residual gas. The
generated macro-electrons are distributed randomly
between CPUs. During the calculations they reside at the
same CPU where they have been generated. No further
macro-electron distributor is needed. Next the space
charge potential of the electrons is calculated. This
potential is the sum of all potentials over all CPUs, so
communications between CPUs are needed.  This
potential is used as one of the field sources for the
Tracker. Also before the end of this iteration the
momentum kicks to the proton bunch are accumulated.

During the intermediate nested loop the potential of
proton beam at each specific position is used to update the
proton beam field source for the Tracker. This step
requires communication between CPUs because the p-
beam potential grid is distributed. This loop is necessary
because the adiabatic changes in the proton beam
potential may be important, so there it must be possible to
update the proton beam field source as frequently as
necessary. Usually it is sufficient to update fields
simultaneously, which means this loop needs only one
step.

Inside the third loop the electron motion is integrated
and the Pivi-Furman electron-wall interaction model is
applied to those that impact the wall.

Stage 3. Proton Coordinate Updates
This stage applies the accumulated kicks from electrons

to the protons.

CONCLUSION
The Electron Cloud Module is now fully implemented

in the ORBIT code and enables self consistent ECE
simulations.

REFERENCES
[1] R. J. Macek, A. A. Browman, M. J. Borden, D. H.

Fitzgerald, R. C. McCrady, T. Spickermannn, and T.
J. Zaugg, "Experimental Studies of Electron Cloud
Effects at the Los Alamos PSR: a Status Report",
Proc. ECLOUD’04, Napa, April 2004; to be
published.

[2] H.C. Hseuh, “Design and Implementation of SNS
Accumulator Ring Vacuum System with Suppression
of Electron Cloud Instability”, Proc. ECLOUD’04,
Napa, April 2004; to be published.

[3] J. A. Holmes, V. Danilov, J. Galambos, A. Shishlo,
S. Cousineau, W. Chou, L. Michelotti, F. Ostiguy, J.
Wei, “ORBIT: beam dynamics calculations for high-
intensity rings”, Proc. EPAC’02, Paris, June 2002, p.
1022.

[4] M. T. F. Pivi and M. A. Furman, PRST-AB 6 (2003)
034201.


